

Domain Adaptation for Predictive Maintenance

Sepideh Pashami

sepideh.pashami@{ri.se, hh.se}

June 29th, 2023

Why Transfer?

- To avoid building a model from scratch
 - Time consuming to train a model
- To reuse existing knowledge
 - Not to develop a model for each conditions
- To deal with a new system or a new configuration
 - Avoid collecting a lot of new data
- To preserve privacy
 - Share models rather than the data

Transfer Learning

The ability of a system to recognise and apply knowledge and skills learned in **previous** domains/tasks to **novel** domains/tasks, which **share some commonality**.

Is transfer learning considers as ML's next frontier?

https://ruder.io/transfer-learning/index.html

Domain adaptation

"Off-the-shelf" strategy

Idea: use outputs of one or more layers of a network trained on a different task as generic feature detectors. Train a new shallow model on these features.

Assume: $D_s = D_T$

Fine-tuning: supervised domain adaptation

Pretrain a network which it is easy to get labels or select a pretrained network

- E.g. ImageNet classification
- Pseudo classes from augmented data
- Slow feature learning, ego-motion

Replace the last layer with supervised objective for target domain

Fine-tune network with labels for target domain

Aligns \mathbf{D}_{S} with \mathbf{D}_{T}

Freeze or fine-tune?

Bottom n layers can be frozen or fine tuned.

- **Frozen:** not updated during backprop
- Fine-tuned: updated during backprop

Which to do depends on target task:

- Freeze: target task labels are scarce, and we want to avoid overfitting
- Fine-tune: target task labels are more plentiful ln LR = 0
 general

Learning with domain adaptation

When data at source and target domains come from similar but different distributions

Create a new feature space that cannot discriminate between the source and target domains and classify correctly in both domains

https://arxiv.org/pdf/2010.03978.pdf

Domain Adversarial Neural Network (DANN)

Class label

Domain label

Input space

Build a network for domain adaptation

- Train a feature extractor and class predictor on source data
- Train a feature extractor and domain adaptor on source and target data
- Use a feature extractor and class predictor at the test time

Backpropagation during training

Design the loss function in a way that we have

- Good class predictor
- Bad domain classifier

Minimising domain shift during backprop.

gradient reversal layer

- leaves the input unchanged during forward propagation
- reverses the gradient by multiplying it by a negative scalar during the backpropagation

Semi-supervised domain adaptation

When some labels are available in the target domain, then we can use these when doing domain adaptation.

Simultaneously optimizing different criteria:

- Classification accuracy on both source and target datasets
- Goodness of mapping different domains

To transfer or not to transfer

Use transfer learning when

- Source and target domains are similar enough!
- Target data set is relatively small
- Source model has been trained on a quite big data set
- Source domain contain diverse set of the data, and not from a domain-specific task

EVE - Extending life of Vehicles within Electromobility era

2019 - 2023

Goals

- Predicting lifetime of each individual battery
- Suggesting actions to extend battery lifetime
- Monitoring of other components in electric driveline, e.g. battery contactor
- Estimating energy consumption and proposing services for different behaviour groups

Monitoring drive batteries

Challenges

Real data is complex

- Relevant information is seldomly directly measured
 - Labels (repair vs actual fault)
 - Sensor measurements (limited number of sensors)
- Data is heavily imbalanced
- Normal operation is difficult to characterise
 - Concept drift due to usage & external conditions
- Missing data
- Low data frequency

Typical Approach - Classical supervised machine learning

Analysing the current replacement strategy

- Can we create a model that predicts the current strategy?
- How can we improve the current strategy?

Results of ESS replacement model

- A ML model to estimate if a bus is approaching an ESS replacement due date, based on operating parameters.
- Trained with 360 buses data and tested on 90 buses.

All - 180 Days	Predicted: No	Predicted: Yes		
Actual: No	7,441	1,427		
Actual: Yes	1,041	1,834		

B5LH – 180 Days	Predicted: No	Predicted: Yes		
Actual: No	3,516	933		
Actual: Yes	654	2,540		

Survival of batteries for hybrid buses

Different survival patterns

Explanation for pattern

Best Pattern:

- Not Emission Level 0
- High usage of the electric mode and low usage of hybrid mode (healthy battery)

Estimating and predicting the State of Health (SOH) for batteries for hybrid buses

Estimating and predicting the State of Health (SOH) for batteries for hybrid buses

Metric	All (3212 Buses)	Monotonic-decreasing Function (2049 Buses)
MAE	2.60	1.04
R ²	0.81	0.98
Correlation	0.90	0.99

M. G. Altarabichi, Y. Fan, S. Pashami, S. Nowaczyk, and T. Rögnvaldsson. **Predicting State of Health and End of Life for Batteries in Hybrid Energy Buses**. ESREL-PSAM 2020 Conference, Italy, 1 - 6 November 2020.

There are more challenges ...

- How to deal with a new system or a new configuration?
 - Can we avoid collecting a lot of new data?
 - E.g. Hybrid vs. full-electric, single vs. double deck
- How to deal with a different usage pattern?
 - E.g. deployment in a new country, long haul vs delivery vehicles
- How about diversity in operating conditions?
 - Do we need a new model for every possible operating condition?

Domain adaptation

Source domain

Target domain

Domain adaptation

Where did we use transfer learning?

Modelling State of Health of Li-Ion Batteries

- Vehicle type
 - single decker, double decker, articulated
- Battery generation
 - Akasol, Samsung, ...
- Countries
 - Sweden, UK, ...
- Data driven grouping

Practical Approach - Domain adaptation

Sample Based Transfer Learning for Predictive Maintenance

- Selecting the right sample population for modelling
 - Physical configurations
 - Deployment areas
 - Operating conditions
 - Usage patterns
 - 0 ...
- Finding homogeneous sub-fleets based on similarity
 - Learning the representation to capture the characteristics of the equipment
 - Grouping peers with clustering and a similarity metric

- A data-driven approach for finding the sub-fleet cluster from the whole population
 - Learning the representation of different equipment from sensor data

- A data-driven approach for finding the sub-fleet cluster from the whole population
 - Learning the representation of different equipment from sensor data

- A data-driven approach for finding the sub-fleet cluster from the whole population
 - Learning the representation of different equipment from sensor data

- A data-driven approach for finding the sub-fleet cluster from the whole population
 - Learning the representation of different equipment from sensor data
 - Finding clusters of peers in the representation space

- A data-driven approach for finding the sub-fleet cluster from the whole population
 - Learning the representation of different equipment from sensor data
 - Finding clusters of peers in the representation space

- A data-driven approach for finding the sub-fleet cluster from the whole population
 - Learning the representation of different equipment from sensor data
 - Finding clusters of peers in the representation space
 - Modelling the health indicator for each cluster

- A data-driven approach for finding the sub-fleet cluster from the whole population
 - Learning the representation of different equipment from sensor data
 - Finding clusters of peers in the representation space
 - Modelling the health indicator for each cluster
 - Matching the testing unit to a cluster and cast predictions on the health indicator

- A data-driven approach for finding the sub-fleet cluster from the whole population
 - Learning the representation of different equipment from sensor data
 - Finding clusters of peers in the representation space
 - Modelling the health indicator for each cluster
 - Matching the testing unit to a cluster and cast predictions on the health indicator
- Configuring the method based on the context information
 - Selecting the representation based on the characteristics of the features (linear or piecewise linear for accumulative variables)
 - The characteristics of battery deterioration varies between different generations

Results of Forecasting SOH

- Given five years of historical data
 - Predict SOH value at the end of the fifth year, given four and a half year of data for training

Methods	Training set vehicles (four years and half data included in the training process)	Leave-out set vehicles (completely excluded from the training process)		
Random Forest (conventional approach)	3.2258 ± 0.1168	3.6935 ± 0.3017		
FP linear model, k-means clustering, Random Forest	2.2137 ± 0.0826	2.5629 ± 0.322		

Feature Based Transfer Learning for Predictive Maintenance

The Problem with Identifying Invariant Features

- ML faces a significant challenge in dynamically evolving environments, where the training conditions (domain) are different from the testing conditions.
- Aim is to identify features that are invariant across different domains.

Magliacane et al, 2018. Domain adaptation by using causal inference to predict invariant conditional distributions. In *Advances in Neural Information Processing Systems* (pp. 10846-10856)

Identification of Invariant Features using GA

- We propose to use a Genetic Algorithm (GA) to select invariant features to transfer across multiple source domains D_S.
- We make a similar assumption to (Magliacane et al, 2018): if a feature subset is invariant across all source domains, then this holds in the target domain.
- The GA is initiated with a population of individuals encoding feature subsets as chromosomes of binary strings.
- The GA evaluates feature subsets according to their performance across all available source domains.

An Application to Li-Ion Batteries

- Our modeling of Li-lon batteries showed that the hybrid bus battery deterioration processes vary significantly across different bus configuration and operating conditions.
- The GA is used to select invariant features to SoH (State of Health) that can be transferred from source to target domain.
- Our preliminary results identified invariant features under change of:
 - Battery Generation.
 - Chassis Type.
 - Operating Country.

Invariant Feature Selection (Battery Generation)

Before Invariant Feature Selection, MAE: 17.04%

After Invariant Feature Selection, MAE: 8.78%

Before Invariant Feature Selection, MAE: 19.63%

After Invariant Feature Selection, MAE: 4.84%

Altarabishi, M.G., et al. Extracting feature selection for predicting State of health of batteries in hybrid buses. DSAA 2021.

Experimental setting

- 1500 hybrid buses
- Different physical configurations
 - Double-Decker, Single-Decker, Articulated

D -	Scenario #	Source Domain D_S	Target Domain D_T
C -	1	Moderate, Fast	Slow
	2	Slow, Fast	Moderate
	3	Slow, Moderate	Fast
	4	Double-decker, Articulated	Single-decker
	5	Single-decker, Articulated	Double-decker
	6	Single-decker, Double-decker	Articulated

Performance comparison on all six scenarios

			9	 <u></u>			
	Slow	Moderate	Fast		Single-decker	Double-decker	Articulated
GA*	1.50 ± 0.01	1.59 ± 0.01	1.88 ± 0.01	GA*	2.05 ± 0.00	1.53 ± 0.01	1.48 ± 0.01
GADIF	1.54 ± 0.02	1.65 ± 0.01	1.96 ± 0.02	GADIF	2.27 ± 0.03	1.53 ± 0.01	1.67 ± 0.03
Pearson	1.54 ± 0.06	1.74 ± 0.05	2.02 ± 0.01	Pearson	2.16 ± 0.12	1.54 ± 0.03	2.08 ± 0.16
RF	1.62 ± 0.07	1.72 ± 0.07	1.99 ± 0.04	RF	2.19 ± 0.14	1.54 ± 0.03	1.78 ± 0.10
LR	1.75 ± 0.06	1.81 ± 0.07	2.12 ± 0.02	LR	2.29 ± 0.09	1.67 ± 0.01	2.07 ± 0.41
SFS	1.54 ± 0.07	1.73 ± 0.07	2.03 ± 0.09	SFS	2.19 ± 0.12	1.60 ± 0.03	2.10 ± 0.15
XGB	1.54 ± 0.07	1.74 ± 0.05	1.99 ± 0.11	XGB	2.16 ± 0.12	1.57 ± 0.02	2.08 ± 0.16
All Features	1.53 ± 0.07	1.72 ± 0.09	2.06 ± 0.14	All Features	2.19 ± 0.21	1.68 ± 0.05	2.07 ± 0.18
5. C							

Ranking of features

"total time" and "hybrid time" are of the highest ranked two features

followed by "hybrid distance",
 "electrical time", "total distance"
 and "ESS age"

Domain Adaptation for Predictive Maintenance

Multi-domain adaptation for regression under conditional distribution shift

Taghiyarrenani et al. Expert system with application. 2023

Multi-domain adaptation for regression under conditional distribution shift

Taghiyarrenani et al. Expert system with application. 2023

Problem Formulation

- little data in target

Transfer learning from single decker to double decker

SOH Models trained on Sweden & Norway transfer well to other countries.

Thank you :)

Klas Thunberg, VBC

Zahra Taghiyar, HH

Daniel Reimhult, VGCS

Yuantao Fan, HH

Mohammed Ghaith Altarabichi, HH

Sławomir Nowaczyk, HH

And, other colleagues at HH, VBC, VGCS, ...