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Post-hoc, local, attribution-based explanations

2Source: Author's doctoral dissertation



Ensembling of explanations

https://towardsdatascience.com/what-are-ensemble-methods-in-machine-learning-cac1d17ed349 3
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LIME Kernel SHAP  Occlusion

Motivation: mutually exclusive explanations

Source: Author's doctoral dissertation



Examples of explanation ensembling
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Scope of the presentation

1. Introduction to three methods for 
ensembling explanations

2. Evaluation of these methods

3. Practical applications using
an open-source library

4. Summary
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NormEnsembleXAI – our XAI ensemble method
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Normalization methods

- Normal Standardization

- Robust Standardization

- Second Moment Scaling
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Aggregation methods
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Aggregation methods

- Average

- Maximum

- Maximum absolute

- Median

- Entropy-based

- Exponential
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Visualizations of NormEnsembleXAI
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Autoweighted – XAI ensemble method
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Bobek, S., Bałaga, P., & Nalepa, G. J. (2021). Towards Model-Agnostic Ensemble Explanations. Lecture Notes in Computer Science, 12745 LNCS, 39–51. 
https://doi.org/10.1007/978-3-030-77970-2_4
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SupervisedXAI – XAI ensemble method
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Zou, L., Goh, H. L., Liew, C. J. Y., Quah, J. L., Gu, G. T., Chew, J. J., Prem Kumar, M., Ang, C. G. L., & Ta, A. (2022). Ensemble image explainable AI (XAI) algorithm for 
severe community-acquired pneumonia and COVID-19 respiratory infections. IEEE Transactions on Artificial Intelligence, 1–1. https://doi.org/10.1109/TAI.2022.3153754
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Limitations of XAI ensembling methods

Time consumption
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Limitations of XAI ensembling methods

Possibility of bias:

- NormEnsembleXAI - choice of 
aggregation function and normalization

- Autoweighted - the metric selection may 
introduce bias towards selected metric

- SupervisedXAI - the highest attribution 
was in the center of the image, and the 
attribution was close to 0 near the edges
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Limitations of XAI ensembling methods

Requirement of additional resources:

- NormEnsembleXAI - nothing
- Autoweighted - multiple models
- SupervisedXAI - pixel-wise annotations
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Limitations of XAI ensembling methods

Only positive feature attributions:

- SupervisedXAI - binary basks [0, 1]
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Visualizations of all EnsembleXAI methods
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Metrics for measuring the quality of explanations
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● Faithfulness (Fa) is assessed using Pixel-Flipping, 

● Randomization (Ra) through Random Logit, 

● Robustness (Ro) via Local Lipschitz Estimation, 

● Complexity (Co) using Sparseness, 

● Localization (Lo) determined with the Pointing-Game.



Uses Sparseness to evaluate simplicity of explanations.

Complexity
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Localization

Uses Pointing-Game to assess if explanations focus on relevant areas.

21



Faithfulness

Uses Pixel-Flipping to test how important features impact prediction
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Randomization

Uses Random Logit to check if explanations hold under model randomness.
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Robustness

Uses Local Lipschitz Estimation to measure stability to small input changes.

24



Method ranking
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Table. Scaled ANOVA test results for ensemble explanation methods.



Method ranking
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Table. Scaled ANOVA test results for all explanation methods.



XAI ensembling Python library

Library available under a link:

https://github.com/Hryniewska/EnsembleXAI
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https://github.com/Hryniewska/EnsembleXAI
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Summary

- Significant benefits of using 
Ensemble XAI methods

- Aggregation method is a key 
factor, but normalization is 
important as well

- NormEnsembleXAI min might be a 
great method to show very salient 
regions,

- EnsembleXAI library is 
open-source and ready to use :)
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Future research

- Expanding to other types of data

- Addressing limitations of these 
algorithms

- Improving SupervisedXAI method

…

…
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“CNN-based explanation ensembling 
for dataset, representation and explanations evaluation”
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Thank you for your attention!
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