NormEnsembleXAI:

Unveiling the Strengths and Weaknesses of XAI Ensemble Techniques

> Weronika Hryniewska-Guzik PhD candidate at Warsaw University of Technology

Post-hoc, local, attribution-based explanations

Perturbation-based explanations

Source: Author's doctoral dissertation

Shapley Value Sampling

Feature Ablation

Ensembling of explanations

https://towardsdatascience.com/what-are-ensemble-methods-in-machine-learning-cac1d17ed349

Motivation: mutually exclusive explanations

Source: Author's doctoral dissertation

Examples of explanation ensembling

Scope of the presentation

- 1. Introduction to three methods for ensembling explanations
- 2. Evaluation of these methods
- 3. Practical applications using an open-source library
- 4. Summary

6

NormEnsembleXAI – our XAI ensemble method

Normalization methods

- Normal Standardization

$$\phi_{i,j}^{\prime e \to m} = \frac{\phi_{i,j}^{e \to m} - mean_{k,l}(\phi_{k,l}^{e \to m}k,l)}{std_{k,l}(\phi_{k,l}^{e \to m})}$$
$$\phi_{i,j}^{\prime e \to m} = \frac{\phi_{i,j}^{e \to m} - median_{k,l}(\phi_{k,l}^{e \to m})}{IQR_{k,l}(\phi_{k,l}^{e \to m})}$$
$$\phi_{i,j}^{\prime e \to m} = \frac{\phi_{i,j}^{e \to m}}{avg_{channels}(std_{k,l}(\phi_{k,l}^{e \to m}))}$$

- Robust Standardization

- Second Moment Scaling

Where:

- $\phi_{i,j}^{e \to m}$ represents the importance of feature j of instance i by explanation method e of machine learning model m.
- Mean and standard deviation are calculated across all instances k and features l.

Aggregation methods

Once normalization is applied, the normalized values $\phi_{i,j}^{\prime e \to m}$ are aggregated using one of the functions (e.g., maximum, minimum, or mean):

$$\phi_{i,j}^{ens \to m} = f_{e \in E_i}(norm(\phi_{i,j}^{e \to m}))$$

Where:

- *f* is the aggregation function (e.g., max, min, or average).
- norm refers to one of the normalization methods described above.

Aggregation methods

- Average
- Maximum
- Maximum absolute
- Median
- Entropy-based
- Exponential

Visualizations of NormEnsembleXAI

Figure 7. Examples of XAI ensembling results.

Autoweighted – XAI ensemble method

Bobek, S., Bałaga, P., & Nalepa, G. J. (2021). Towards Model-Agnostic Ensemble Explanations. *Lecture Notes in Computer Science*, 12745 LNCS, 39–51. 12 https://doi.org/10.1007/978-3-030-77970-2_4

SupervisedXAI – XAI ensemble method

Zou, L., Goh, H. L., Liew, C. J. Y., Quah, J. L., Gu, G. T., Chew, J. J., Prem Kumar, M., Ang, C. G. L., & Ta, A. (2022). Ensemble image explainable AI (XAI) algorithm for severe community-acquired pneumonia and COVID-19 respiratory infections. *IEEE Transactions on Artificial Intelligence*, 1–1. https://doi.org/10.1109/TAI.2022.3153754

Time consumption

Method	Average time (s)
Autoweighted	48.699 ± 3.297
SupervisedXAI(500 samples)	41.858 ± 0.028
SupervisedXAI(20 samples)	0.972 ± 0.046
NormEnsembleXAI normal avg	0.114 ± 0.078
NormEnsembleXAI scaling avg	0.088 ± 0.059

Table 3. Average time (in seconds) of ensembling explanations without generating component explanations.

14

Possibility of bias:

- NormEnsembleXAI choice of aggregation function and normalization
- Autoweighted the metric selection may introduce bias towards selected metric
- SupervisedXAI the highest attribution was in the center of the image, and the attribution was close to 0 near the edges

Requirement of additional resources:

- NormEnsembleXAI nothing
- Autoweighted multiple models
- SupervisedXAI pixel-wise annotations

Only positive feature attributions:

- SupervisedXAI - binary basks [0, 1]

Visualizations of all EnsembleXAI methods

Figure 7. Examples of XAI ensembling results.

Metrics for measuring the quality of explanations

- Faithfulness (Fa) is assessed using Pixel-Flipping,
- Randomization (Ra) through Random Logit,
- Robustness (Ro) via Local Lipschitz Estimation,
- Complexity (Co) using Sparseness,
- Localization (Lo) determined with the Pointing-Game.

Complexity

Uses Sparseness to evaluate simplicity of explanations.

inagenet				
Metric	Aggr.	normal	robust	scaling
	avg	0.462 ± 0.028	0.728 ± 0.108	0.469 ± 0.045
2	entr	0.465 ± 0.051	0.530 ± 0.014	0.451 ± 0.054
olexi	exp	0.516 ± 0.075	0.829 ± 0.095	0.522 ± 0.084
dmo	max	0.359 ± 0.044	0.778 ± 0.172	0.311 ± 0.046
0	med	0.465 ± 0.027	0.519 ± 0.035	0.552 ± 0.045
55	min	0.304 ± 0.024	0.823 ± 0.180	0.364 ± 0.035

Imanablat

Metric	Method	ImageNet results
xity	autoweighted	0.526 ± 0.030
mple	supervisedXAI_auto	0.395 ± 0.045
Col	supervisedXAI_no	0.393 ± 0.042

Metric	Aggr.	normal	robust	scaling
	avg	0.443 ± 0.021	0.754 ± 0.095	0.405 ± 0.053
2	entr	0.455 ± 0.042	0.547 ± 0.026	0.374 ± 0.050
lexit	exp	0.477 ± 0.047	0.849 ± 0.078	0.458 ± 0.064
duo	max	0.346 ± 0.033	0.833 ± 0.122	0.237 ± 0.048
0	med	0.451 ± 0.033	0.519 ± 0.029	0.527 ± 0.041
	min	0.276 ± 0.035	0.859 ± 0.137	0.370 ± 0.031

CIFAR

Metric	Method	CIFAR results
xity	autoweighted	0.470 ± 0.025
mple	supervisedXAI_auto	0.249 ± 0.098
Col	supervisedXAI_no	0.247 ± 0.098

MNIS

Metric	Aggr.	normal	robust	scaling
	avg	0.505 ± 0.030	0.709 ± 0.109	0.509 ± 0.041
≥	entr	0.514 ± 0.034	0.527 ± 0.040	0.448 ± 0.066
olexi	exp	0.553 ± 0.055	0.834 ± 0.094	0.522 ± 0.075
duo	max	0.387 ± 0.039	0.732 ± 0.121	0.277 ± 0.064
0	med	0.654 ± 0.058	0.656 ± 0.081	0.728 ± 0.079
	min	0.325 ± 0.026	0.746 ± 0.121	0.466 ± 0.052

Metric	Method	FashionMNIST results
xity	autoweighted	0.408 ± 0.021
mple	supervisedXAI_auto	0.375 ± 0.093
CO	supervisedXAI_no	0.376 ± 0.093

Localization

Uses Pointing-Game to assess if explanations focus on relevant areas.

Metric Aggr.		normal	robust	
	avg	0.790 ± 0.409	0.700 ± 0.461	
F	entr	0.560 ± 0.499	0.910 ± 0.288	

ImageNet

scaling 0.790 ± 0.409

R	entr	0.560 ± 0.499	0.910 ± 0.288	0.620 ± 0.488
sati	exp	0.700 ± 0.461	0.690 ± 0.465	0.740 ± 0.441
ocal	max	0.670 ± 0.473	0.750 ± 0.435	0.660 ± 0.476
ĩ	med	0.780 ± 0.416	0.780 ± 0.416	0.720 ± 0.451
	min	0.638 ± 0.484	0.635 ± 0.484	0.570 ± 0.498

Metric	Method	ImageNet results
Ition	autoweighted	0.760 ± 0.429
alisa	supervisedXAI_auto	0.810 ± 0.394
Loc	supervisedXAI_no	0.760 ± 0.429

Metric	Aggr.	normal	robust	scaling
	avg	0.614 ± 0.489	0.743 ± 0.439	0.594 ± 0.494
E	entr	0.554 ± 0.500	0.941 ± 0.238	0.564 ± 0.498
sati	exp	0.584 ± 0.495	0.703 ± 0.459	0.614 ± 0.489
ocali	max	0.564 ± 0.498	0.733 ± 0.445	0.554 ± 0.500
Ľ	med	0.535 ± 0.501	0.584 ± 0.495	0.574 ± 0.497
	min	1.000	0.500 ± 0.522	0.580 ± 0.499

CIFAR

Metric	Method	CIFAR results
ttion	autoweighted	0.614 ± 0.489
alisa	supervisedXAI_auto	0.683 ± 0.468
Loc	supervisedXAI_no	0.653 ± 0.478

FashionMNIST

Metric	Aggr.	normal	robust	scaling
	avg	0.940 ± 0.239	0.910 ± 0.288	0.950 ± 0.219
Б	entr	0.980 ± 0.141	0.990 ± 0.100	1.000 ± 0.000
sati	exp	0.950 ± 0.219	0.930 ± 0.256	0.950 ± 0.219
Locali	max	0.940 ± 0.239	0.930 ± 0.256	0.950 ± 0.219
	med	0.960 ± 0.197	0.990 ± 0.100	0.950 ± 0.219
	min	0.966 ± 0.183	0.960 ± 0.198	0.980 ± 0.141

Metric	Method	FashionMNIST results
ttion	autoweighted	1.000 ± 0.000
alise	supervisedXAI_auto	0.990 ± 0.100
Loc	supervisedXAI_no	0.990 ± 0.100

Faithfulness

Uses Pixel-Flipping to test how important features impact prediction

ImageNet				
Metric	Aggr.	normal	robust	scaling
	avg	0.023 ± 0.044	0.061 ± 0.066	0.023 ± 0.040
SS	entr	0.024 ± 0.038	0.052 ± 0.066	0.022 ± 0.041
llnes	exp	0.026 ± 0.046	0.077 ± 0.082	0.024 ± 0.042
aithfu	max	0.022 ± 0.041	0.064 ± 0.069	0.022 ± 0.042
Fa	med	0.021 ± 0.032	0.021 ± 0.031	0.025 ± 0.040
	min	0.058 ± 0.104	0.072 ± 0.115	0.078 ± 0.131

CIFAR				
Metric	Aggr.	normal	robust	scaling
	avg	0.059 ± 0.110	0.151 ± 0.124	0.056 ± 0.107
SS	entr	0.072 ± 0.107	0.136 ± 0.137	0.083 ± 0.114
aulu	exp	0.076 ± 0.122	0.162 ± 0.150	0.069 ± 0.110
lithfu	max	0.087 ± 0.115	0.168 ± 0.125	0.097 ± 0.127
Fa	med	0.042 ± 0.074	0.040 ± 0.063	0.049 ± 0.084
	min	0.027 ± 0.025	0.088 ± 0.103	0.079 ± 0.120

Fas	hion	MNI	ST

Metric	Aggr.	normal	robust	scaling
	avg	0.019 ± 0.061	0.028 ± 0.118	0.020 ± 0.068
SS	entr	0.451 ± 0.283	0.132 ± 0.197	0.597 ± 0.280
llnes	exp	0.320 ± 0.273	0.239 ± 0.203	0.274 ± 0.260
lithfu	max	0.059 ± 0.127	0.054 ± 0.108	0.122 ± 0.172
Ц	med	0.012 ± 0.035	0.025 ± 0.102	0.021 ± 0.095
	min	0.055 ± 0.146	0.052 ± 0.148	0.041 ± 0.118

Metric	Method	ImageNet results
ssar	autoweighted	0.024 ± 0.045
thfult	supervisedXAI_auto	0.102 ± 0.114
Fair	supervisedXAI_no	0.104 ± 0.115

Metric	Method	CIFAR results
ssau	autoweighted	0.052 ± 0.110
thfulr	supervisedXAI_auto	0.087 ± 0.105
Fair	supervisedXAI_no	0.089 ± 0.105

Metric	Method	FashionMNIST results
less	autoweighted	0.035 ± 0.100
thfulr	supervisedXAI_auto	0.437 ± 0.366
Fair	supervisedXAI_no	0.436 ± 0.365

Randomization

Uses Random Logit to check if explanations hold under model randomness.

ImageNet				
Metric	Aggr.	normal	robust	scaling
	avg	0.107 ± 0.091	0.344 ± 0.108	0.167 ± 0.110
tion	entr	0.397 ± 0.044	0.317 ± 0.040	0.335 ± 0.054
nisat	exp	0.789 ± 0.098	0.546 ± 0.086	0.772 ± 0.099
Randon	max	0.590 ± 0.084	0.480 ± 0.227	0.582 ± 0.095
	med	0.139 ± 0.077	0.151 ± 0.101	0.142 ± 0.091
	min	0.631 ± 0.091	0.503 ± 0.256	0.599 ± 0.092

Metric	Method	ImageNet results
sation	autoweighted	0.344 ± 0.121
idomis	supervisedXAI_auto	0.735 ± 0.084
Ran	supervisedXAI_no	0.757 ± 0.088

UIFAR						
Metric	Aggr.	normal	robust	scaling		
	avg	0.029 ± 0.046	0.147 ± 0.070	0.070 ± 0.080		
lion	entr	0.201 ± 0.047	0.111 ± 0.073	0.151 ± 0.073		
nisat	exp	0.381 ± 0.112	0.284 ± 0.085	0.377 ± 0.110		
nobr	max	0.176 ± 0.065	0.304 ± 0.170	0.206 ± 0.079		
Rar	med	0.047 ± 0.043	0.058 ± 0.049	0.056 ± 0.056		
	min	0.140	0.373 ± 0.159	0.155 ± 0.072		

CIEAD

Metric	Method	CIFAR results
sation	autoweighted	0.050 ± 0.052
domi	supervisedXAI_auto	0.181 ± 0.193
Ran	supervisedXAI_no	0.180 ± 0.195

Metric	Method	FashionMNIST results
sation	autoweighted	0.008 ± 0.154
domis	supervisedXAI_auto	0.204 ± 0.243
Ran	supervisedXAI no	0 201 + 0 244

FashionMNIST

Metric	Aggr.	normal	robust	scaling
	avg	0.127 ± 0.088	0.347 ± 0.219	0.120 ± 0.109
ion	entr	0.244 ± 0.101	0.166 ± 0.090	0.134 ± 0.144
lisat	exp	0.610 ± 0.176	0.626 ± 0.280	0.601 ± 0.193
nobi	max	0.150 ± 0.088	0.245 ± 0.198	0.263 ± 0.122
Ran	med	0.220 ± 0.165	0.263 ± 0.166	0.469 ± 0.166
	min	0.000 ± 0.133	0.223 ± 0.201	0.006 ± 0.109

Robustness

Uses Local Lipschitz Estimation to measure stability to small input changes.

	Imagenet						
Metric	Aggr.	normal	robust	scaling			
	avg	0.325 ± 0.082	1.064 ± 0.152	0.314 ± 0.077			
thess	entr	0.468 ± 0.039	1.443 ± 0.102	0.497 ± 0.052			
	exp	0.096 ± 0.033	0.778 ± 0.115	0.103 ± 0.036			
ingo	max	0.207 ± 0.055	0.862 ± 0.119	0.218 ± 0.062			
Ř	med	0.403 ± 0.094	0.370 ± 0.091	0.379 ± 0.095			
	min	0.184 ± 0.054	0.816 ± 0.112	0.189 ± 0.050			

.. .

			and the second se	
Metric	Aggr.	normal	robust	scaling
	avg	0.825 ± 0.147	1.163 ± 0.107	0.816 ± 0.241
SS	entr	0.697 ± 0.052	1.575 ± 0.096	0.779 ± 0.144
stne	exp	0.435 ± 0.075	0.843 ± 0.077	0.457 ± 0.093
inqo	max	0.627 ± 0.075	0.942 ± 0.086	0.654 ± 0.177
R	med	0.836 ± 0.120	0.803 ± 0.124	0.800 ± 0.151
	min	0.512	0.904 ± 0.014	0.687 ± 0.119

CIFAR

0.627 ± 0.075	0.942 ± 0.086	0.654 ± 0.177	sing
0.836 ± 0.120	0.803 ± 0.124	0.800 ± 0.151	ß
0.512	0.904 ± 0.014	0.687 ± 0.119	
0.012	0.00120.011	0.001 2 0.110	L

FashionMNIST

Netric	Aggr.	normal	robust	scaling
	avg	0.198 ± 0.053	0.494 ± 0.405	0.187 ± 0.048
S	entr	0.455 ± 0.072	1.106 ± 0.233	0.390 ± 0.092
stnes	exp	0.116 ± 0.051	0.316 ± 0.291	0.115 ± 0.046
ŝngo	max	0.379 ± 0.081	0.480 ± 0.306	0.309 ± 0.095
ř	med	0.139 ± 0.039	0.257 ± 0.088	0.121 ± 0.038
	min	0.450 ± 0.101	0.466 ± 0.319	0.489 ± 0.117

Metric	Method	ImageNet results
less	autoweighted	0.249 ± 0.058
oustr	supervisedXAI_auto	0.227 ± 0.077
Rot	supervisedXAI_no	0.217 ± 0.077

Metric	Method	CIFAR results
less	autoweighted	0.690 ± 0.103
ustr	supervisedXAI_auto	0.772 ± 0.335
Rot	supervisedXAI_no	0.764 ± 0.337

Metric	Method	FashionMNIST results
less	autoweighted	0.270 ± 0.101
ustr	supervisedXAI_auto	0.203 ± 0.115
Rot	supervisedXAI_no	0.207 ± 0.121

Method ranking

Method	Faithfullness	Complexity	Localization	Randomisation	Robustness	Score
NormEnsembleXAI entr normal	1.000	0.900	1.000	0.385	0.706	3.990
NormEnsembleXAI entr scaling	1.000	0.800	0.000	0.000	0.706	2.506
NormEnsembleXAI max abs normal	0.538	0.900	0.000	0.615	0.118	2.171
NormEnsembleXAI exp normal	0.538	0.500	0.000	1.000	0.000	2.038
NormEnsembleXAI avg robust	0.000	0.200	0.333	0.462	1.000	1.995
NormEnsembleXAI max abs scaling	0.462	0.900	0.000	0.615	0.000	1.977
NormEnsembleXAI exp scaling	0.538	0.500	0.000	0.923	0.000	1.962
NormEnsembleXAI exp robust	0.538	0.000	0.000	0.769	0.647	1.955
NormEnsembleXAI entr robust	0.231	0.500	0.000	0.000	0.941	1.672
NormEnsembleXAI max abs robust	0.462	0.100	0.000	0.308	0.588	1.457
NormEnsembleXAI avg normal	0.000	1.000	0.000	0.000	0.118	1.118
NormEnsembleXAI avg scaling	0.000	0.900	0.000	0.000	0.118	1.018

Table. Scaled ANOVA test results for ensemble explanation methods.

Method ranking

Method	Faithfullness	Complexity	Localization	Randomisation	Robustness	Score
Deconvolution	0.000	1.000	0.300	1.000	0.600	2.900
NormEnsembleXAI entr normal	0.933	0.500	0.400	0.200	0.520	2.553
KernelShap	0.800	0.722	0.000	0.000	1.000	2.522
NormEnsembleXAI entr scaling	1.000	0.500	0.100	0.000	0.520	2.120
Lime	0.800	0.056	0.000	0.080	0.920	1.856
GuidedBackprop	0.000	0.500	0.200	0.920	0.120	1.740
NormEnsembleXAI max abs normal	0.533	0.611	0.100	0.360	0.080	1.684
FeatureAblation	0.000	0.556	0.000	0.280	0.800	1.636
NormEnsembleXAI exp robust	0.533	0.000	0.100	0.480	0.480	1.593
NoiseTunnel	0.000	0.167	1.000	0.320	0.080	1.567
NormEnsembleXAI exp normal	0.533	0.333	0.100	0.600	0.000	1.567
NormEnsembleXAI exp scaling	0.533	0.333	0.100	0.560	0.000	1.527
NormEnsembleXAI max abs scaling	0.467	0.556	0.100	0.320	0.000	1.442
NormEnsembleXAI avg robust	0.000	0.111	0.200	0.280	0.760	1.351
NormEnsembleXAI max abs robust	0.467	0.056	0.100	0.200	0.440	1.262
NormEnsembleXAI entr robust	0.200	0.333	0.000	0.000	0.720	1.253

Table. Scaled ANOVA test results for all explanation methods.

XAI ensembling Python library

Library available under a link:

https://github.com/Hryniewska/EnsembleXAI

Example of Workflow

- 1. Choose Model to Explain
- 2. Read an Image to Explain
- 3. Generate Explanations
- 4. Stack Explanations
- 5. (Optional) Normalize Explanations
- 6. Ensemble Your Explanations
- 7. Visualize Your Results
- 8. (Optional) Calculate Quality Metric

1. Choose Model to Explain

First, select a pre-trained model to be explained. This example uses the resnet18 model from the torchvision library:

```
from torchvision.models import resnet18
# Load a pretrained model
model = resnet18(weights='IMAGENET1K_V1')
model = model.eval()
```

Q

2. Read an Image to Explain

Next, read in an image and preprocess it to match the model's input requirements. The image will be resized to 224x224 pixels, which is the expected input size for the resnet18 model.

```
import cv2
# Load and preprocess the image
img = cv2.imread("path_to_image.jpg") # Replace with the path to your image
img = cv2.resize(img, (224, 224)) # Resize the image to fit the model input size
```

ιŪ

3. Generate Explanations

Now, use the Captum library to generate explanations for the image. You can also use any other library, but the output type and shape should be the same as in the Captum library. This example demonstrates the usage of three different methods: Integrated Gradients, GradientShap, and Saliency.

```
import torch
from captum.attr import IntegratedGradients, GradientShap, Saliency
# Prepare the input for the model
inputs = torch.tensor(img).unsqueeze(0).float() # Add batch dimension and convert to tensor
# Generate explanations using different methods
ig = IntegratedGradients(model).attribute(inputs, target=3)
gs = GradientShap(model).attribute(inputs, target=3)
sal = Saliency(model).attribute(inputs, target=3)
```

٢Ū

4. Stack Explanations

Stack the generated explanations to create a consolidated tensor for further processing:

```
# Stack the explanations
concatenated_explanations = torch.stack([ig, gs, sal], dim=1)
```

D

5. (Optional) Normalize Explanations

Normalization of explanations is recommended before using the NormEnsembleXAI method. Normalize the stacked explanations using, for example, the second_moment_normalize function to ensure they are on the same scale before ensembling:

from EnsembleXAI.Normalization import second_moment_normalize

Normalize explanations using Second Moment Scaling normalized_explanations = second_moment_normalize(concatenated_explanations) Q

6. Ensemble Your Explanations

Use the NormEnsembleXAI method with an averaging function to ensemble the explanations into a final output:

```
from EnsembleXAI.Ensemble import normEnsembleXAI
```

Use NormEnsembleXAI with 'avg' aggregation function output_normEnsembleXAI = normEnsembleXAI(normalized_explanations, aggregating_func='avg') ٢IJ

7. Visualize Your Results

Visualize the original image alongside the ensembled explanations:

```
import matplotlib.pyplot as plt
from captum.attr import visualization as viz
# Create a figure to visualize the original image and ensembled explanation
fig, ax = plt.subplots(1, 2, figsize=(12, 3))
# Display the original image
ax[0].imshow(img)
ax[0].set_axis_off()
ax[0].set_title("Original Image")
# Display the NormEnsembleXAI explanation
viz.visualize_image_attr(
    output_normEnsembleXAI.numpy().transpose(1, 2, 0), plt_fig_axis=(fig, ax[1]), use_pyplot=False, t
```

٢Ü

7. Visualize Your Results

Visualize the original image alongside the ensembled explanations:

```
import matplotlib.pyplot as plt
from captum.attr import visualization as viz
# Create a figure to visualize the original image and ensembled explanation
fig, ax = plt.subplots(1, 2, figsize=(12, 3))
# Display the original image
ax[0].imshow(img)
ax[0].set_axis_off()
ax[0].set_title("Original Image")
# Display the NormEnsembleXAI explanation
viz.visualize_image_attr(
    output_normEnsembleXAI.numpy().transpose(1, 2, 0), plt_fig_axis=(fig, ax[1]), use_pyplot=False, t
```

٢Ü

8. (Optional) Calculate Quality Metric

Finally, it is possible to assess the quality of the explanations in dirrent ways. Here, calculate the consistency between two explanation methods (e.g., Integrated Gradients and NormEnsembleXAI explanation) using the consistency metric from EnsembleXAI:

```
from EnsembleXAI.Metrics import consistency
# Calculate the consistency between Integrated Gradients and NormEnsembleXAI explanation
consistency_score = consistency(ig, output_normEnsembleXAI)
print(f"Consistency Score between IG and NormEnsembleXAI: {consistency_score}")
```

Summary

- Significant benefits of using Ensemble XAI methods
- Aggregation method is a key factor, but normalization is important as well
- NormEnsembleXAI min might be a great method to show very salient regions,
- EnsembleXAI library is open-source and ready to use :)

Future research

- Expanding to other types of data

- Addressing limitations of these algorithms

- Improving SupervisedXAI method

"CNN-based explanation ensembling for dataset, representation and explanations evaluation"

NORMENSEMBLEXAI: UNVEILING THE STRENGTHS AND WEAKNESSES OF XAI ENSEMBLE TECHNIQUES

Weronika Hryniewska-Guzik, Bartosz Sawicki, Przemysław Biecek

Faculty of Mathematics and Information Science Warsaw University of Technology Koszykowa 75, 00-662 Warsaw (Poland) weronika.hryniewska.dokt@pw.edu.pl

ABSTRACT

This paper presents a comprehensive comparative analysis of explainable artificial intelligence (XAI) ensembling methods. Our research brings three significant contributions. Firstly, we introduce a novel ensembling method, NormEnsembleXAI, that leverages minimum, maximum, and average functions in conjunction with normalization techniques to enhance interpretability. Secondly, we offer insights into the strengths and weaknesses of XAI ensemble methods. Lastly, we provide a library, facilitating the practical implementation of XAI ensembling, thus promoting the adoption of transparent and interpretable DL models.

Thank you for your attention!