
UServ Case Study, Conceptual Design with ARD+ Method

Grzegorz J. Nalepa
Institute of Automatics,

AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

gjn@agh.edu.pl

Abstract

The paper is dedicated to an analysis of the classic business
rules study called UServ. The importance of this study comes
from the fact, that it serves as a benchmark example for a
number of design and implementation methods for rules. In
this paper, the analysis is conducted from the knowledge en-
gineering point of view. The results of the analysis are also
used to present the design of UServ using ARD+, a design
method developed within the HeKatE project. The project
provides a unified hierarchical design solution, that does not
suffer from the well-known semantic gaps. In the paper the
design gap is exposed; it is due to the lack of integration of the
original SBVR, BPMN and rule methods used in the study.

Introduction
The rule-based knowledge specification method is one a
classic one in AI (Russell & Norvig 2003). Rules in vari-
ous forms find applications in different areas of engineering
and business. The latter is especially true with the so-called
business rules approach, that has been gaining momentum
recently. While it could be considered a rediscovery of the
rule-based expert systems (RBS) studied in AI in the ’80 and
’90, it is very successful at providing efficient solutions for
rules deployment in business systems.

Practical support for business rules design remains an ac-
tive development area, with several communities providing
different approaches. This paper discusses a classic busi-
ness rules case study called UServ, designed with the BPMN
method from OMG. Then an alternative design using the
ARD+ method developed by the HeKatE project is pre-
sented. The project aims at providing advanced AI methods
to support design and business software analysis.

Business Rules Design Approaches
Business Rules (Ross 2003; von Halle 2001) (BR for short)
are a rediscovery of the rule-based expert systems studied
for years in AI. In last years BR became popular among non-
engineers, especially in business and management environ-
ments. This is due to the fact, that rules are a very natural,
intuitive yet powerful knowledge specification tool.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Current development of the BR systems includes: rule en-
gines, (BRE) rule management (and interchange), (BRMS)
rule design, rule analysis. To some extent this corresponds to
the classic research issues in the RBS. What is important, is
the fact, that the emphasis is different. Since the technology
is commercially driven, a fast rule deployment is usually the
single most important issues. This why the development of
fast rule engines is the priority. These engines are often ac-
companied by number of rule acquisition tools, able to read
rules in number of formats, e.g. classic spreadsheets files.
These tools use only simple syntax checkers.

Number of companies provide mature solutions, with
FairIsaac and ILOG being the leaders. There are several ma-
ture open-source solutions, especially JBoss Rules (formerly
Drools) on the RedHat JBoss platform, and Jess. Another
group of engines provides a business process perspective,
e.g. VisualRules from Innovations. In order to import, inte-
grate and manage large rulebases BR management systems
(BRMS) are used.

Specialized design methods are not introduced in most
cases. The design support is limited to the use of decision
tables, or decision trees. This limitation is especially when
there is a need to design a new and complex system.

However, recently there has been a lot of new develop-
ments in the area of BR design. When BR systems began to
play an important role in enterprise management, there was
a need to integrate them on a higher level, possibly at the de-
sign stage. This is why, there have been multiple attempts to
provide new design methods, that could be integrated with
UML-based object-oriented applications. Two most impor-
tant include REWERSE URML, and OMG PRI.

Another influential group of developers works within the
W3C framework, focusing on the data-perspective, includ-
ing XML-based markup languages, metadata representation
with RDF/S and ontologies. W3C aims at providing a plat-
form for rules on the Web (possibly the Semantic Web)
through the RIF standard (Rule Interchange Format).

What seems unfortunate, is the fact that quality issues are
often not considered, with quality assurance being treated as
an optional product, not a process, or important feature of
the design. There are very few companies providing spe-
cialized rule analysis tools, with LibRT being one of the ex-
ceptions. Quality of BR is not such a “hot” topic among
researchers, as were the RBS evaluation, validation, verifi-

cation, and analysis in the ’90s.

HeKatE Design Approach
The HeKatE project (hekate.ia.agh.edu.pl) aims at
providing unified modeling methods for rules. These meth-
ods should support the design from the system description
in the natural language, through a formalized multilevel de-
sign, to a final, automated implementation. The process
should be supported by intelligent tools helping in the de-
sign, as well as translation and integration of the model.

Currently, this approach is based upon a concept of a
three-level design, including conceptual, logical, and phys-
ical design. At every level another design method is used.
The methods are integrated, with the integration formally
described, in order to evade well-known semantic gaps that
are common in the software engineering. The project aims
at supporting general business software design, and business
rules, but is based on the previous experiences with design
and implementation of RBS in AI.

At this stage, the project provides ARD conceptual de-
sign method for attributes, where ARD stands for Attribute
Relationship Diagrams, and XTT logical design method for
rules, where XTT stands for eXtended Tabular Trees. While
ARD allows to identify system attributes and their functional
dependencies, XTT provides means to build decision rules
using these attributes. The ARD method has been recently
largely reworked towards supporting more complex design
cases with a fully formalized design. For the preliminary
formal description of the ARD+ method see (Nalepa & Wo-
jnicki 2008b). At the same time XTT is also being enhanced
toward a general rule programming model, for the progress
see (Nalepa & Wojnicki 2007).

Supporting tools are an important area of development
within the project. At the moment, the ARD+ design is
supported by a prototype Prolog tool-chain, that allows for
an automated visualization of the model using the GraphViz
tool. For the description of the prototype see (Nalepa & Wo-
jnicki 2008a). The enhanced XTT design is supported by a
prototype visual editor using a Qt library.

The ARD+ method aims at capturing relations between
attributes in terms of Attributive Logic (Ligęza 2006; Ligęza
& Nalepa 2007). Attributes denote certain system property.
A property is described by one or more attributes. ARD+
captures functional dependencies among system these prop-
erties. A simple property is a property described by a single
attribute, while a complex property is described by multiple
attributes. It is indicated that particular system property de-
pends functionally on other properties. Such dependencies
form a directed graph with nodes being properties.

There are two kinds of attributes adapted by ARD+:
conceptual attribute, an attribute describing some general,
abstract aspect of the system to be specified and refined
e.g.: WaterLevel. Physical attribute is an attribute de-
scribing a well-defined, atomic aspect of the system, e.g.
theWaterLevelInTank1. Conceptual attributes are fi-
nalized during the design process, into possibly multiple
physical attributes that cannot be finalized (they are present
in the final rules).

The gradual design process is based on the notions
of transformations. There are two transformations al-
lowed:these are: finalization and split. Finalization – trans-
forms a simple property described by a conceptual attribute
into a property described by one or more conceptual or phys-
ical attributes. It introduces a more specific knowledge,
more attribute about the given property. Split – transforms
a complex property into a number of properties and defines
functional dependencies among them. Attributes are unique,
the same attribute cannot describe more than a single prop-
erty. The number of transformations in a single design step,
also referred to as “level transition” is limited to one per
node.

During the design process, upon splitting and finalization,
the ARD model grows. This growth is expressed by con-
secutive diagram levels, making the design more specific.
This constitutes the hierarchical model. The implementa-
tion of the model is provided through storing the lowest
available, most detailed diagram level, and additional infor-
mation needed to recreate all of the higher levels, the so-
called Transformation Process History, TPH for short. A
TPH forms a tree-like structure then, denoting what particu-
lar property is split into or what attributes a particular prop-
erty attribute is finalized into.

A Prolog-based prototype providing the ARD+ design
method has been built. It serves as a proof of concept for the
ARD+ design methodology and prototyping environment. It
is designed as a multi-layer architecture: providing low and
high-level predicates to manipulate the knowledge base and
to represent the design. In the knowledge base attributes,
properties, dependencies and TPH are represented as Pro-
log facts, using dynamic knowledge modification capability.
Examples of low-level predicates and transformations are:
ard_att_add(+Attribute)
ard_att_del(?Attribute)
ard_depend_add(ToProperty,FromProperty)
ard_depend_del(ToProperty,FromProperty)
ard_finalize(+Property,+ListOfNewAttributes)
ard_split(+Property,+PropList,+DependList)

The low-level visualization primitives generate data for
the visualization tool-chain. The tool-chain is based on Unix
(or Unix-like) environment and uses SWI-Prolog (www.
swi-prolog.org), GraphViz (www.graphviz.org)
and ImageMagick (www.imagemagick.org).

In this paper the focus is to apply, present and test the
ARD+ method on the classic UServ business rules case
study (BRForum 2005), using the Prolog tool-chain (Nalepa
& Wojnicki 2008a).

The UServ Case Study
The UServ case (BRForum 2005) is a benchmark case
study from the Business Rules Forum. Since it has
been published, it has been serving as one of the bench-
mark use cases for number of design tools for business
rules from different groups. For a in-depth analysis
and implementation from the REWERSE-I1 group, see
http://hydrogen.informatik.tu-cottbus.
de/moodle/course/enrol.php?id=24.

From the original description one can learn that UServ
Financial Services provides a number of financial products,

including: insurance products, as well as banking services.
UServ aims at satisfying the complete financial services of
its clients. With this focus on complete relationship services,
clients are rewarded for their loyalty as they deepen their re-
lationship with UServ by increasing their financial portfolio.
UServ plays a balancing act between rewarding their best
clients and managing the risk inherent in providing on-going
service to clients whose portfolios are profitable, but violate
the eligibility rules of individual products. UServ’s business
rules are an essential component for managing the risk. The
business rules address eligibility, pricing and cancellation
policies at both the individual product and portfolio level.
The case study focuses on UServ’s vehicle insurance prod-
ucts, but differentiates the basic business rules from those
that apply to preferred and elite clients.

The case description includes the following parts: the
general description, business rules, use scenarios, business
concepts model, and business process model. The original
case description does not include hints, which information
has been acquired from the customer (the UServ Financial
Services), and which was actually inferred by the design-
ers. Since the core knowledge about the company is con-
tained within the rules, and processes, one can imagine, that
these were the parts acquired, whereas the business concepts
model has been actually inferred. It should also be observed,
that while the rules offer a declarative knowledge, the pro-
cesses present the sequential perspective.

The business rules model includes:
1. 2 Client Segmentation Business Rules (called RS here)
2. Eligibility Business Rules (RE), including:

(a) 14 rules for Automobile Eligibility (REA), including:
i. 5 rules for Potential Theft Category (REAT),

ii. 5 rules for Potential Occupant Injury Category
(REAI),

iii. 4 rules for Auto Eligibility (REAE).
(b) 12 rules for Driver Eligibility (RED), including:

i. 9 rules for Driver Age Category (REDA),
ii. 3 rules for Driving Record Category (REDR).

(c) 14 rules for final Eligibility Scoring (RES), including:
i. 3 rules for Automobile Eligibility scoring (RESA),

ii. 4 rules for Driver Eligibility scoring (RESD),
iii. 2 rules for Client Segment scoring (RESS),
iv. 5 rules for the main Eligibility Scoring (RESM).

3. Pricing Business Rules (RP), including:
(a) Auto Premiums (RPP), 13 rules,
(b) Auto Discounts (RPA), 5 rules,
(c) Driver Premiums (RPD), 10 rules,
(d) Market Segment Discounts (RPS), 2 rules, and
(e) a single rule for the Base Premium (RPB).

This makes a total of 73 rules, of different types, e.g. fact,
calculating, and constraint satisfaction rules.

The business process model includes two basic processes,
shown on the highest level (Manage UServ called PM here),
that are (top-to-down):

1. Vehicle Insurance Application Process, (PA)

2. Policy Renewal Process (PR).

They both use the basic subprocesses, that is:

1. Policy Processing (PP), based on the eligibility scoring,
that makes use of

2. Policy Scoring (PS), that uses the eligibility rules for car
and driver.

The top level processes PA and PR implicitly make use of the
pricing rules. The model is built using the Business Process
Modelling Notation (BPMN) (OMG 2006a).

The business concepts model is put forward with use of
the SBVR notation, that is the Semantics of Business Vocab-
ulary and Business Rules (OMG 2006b). It tries to captures
the relationships between different objects (mostly in terms
of the OOA/P, UML) that could possibly identified in the
system, and its environment. It should be helpful to better
understand the system, as well as provide hints for the fu-
ture OO-based model and implementation. The use scenar-
ios serve as the test cases for the implementation. The UServ
case description does not include any information about im-
plementations of this study, as it is supposed to aim as a
reference model.

Before moving to the actual design with the HeKatE
methodology, it is worth emphasizing, that from the point
of view of a classic knowledge engineer, this model seems
to be unclear, redundant, and possibly inconsistent. First
of all the declarative rule-based perspective is implicitly, un-
clearly mixed with the sequential process-based perspective.
This is not to deny a possible use of these two perspectives,
but to point out an inconsistent model notation. To some
extent, this is due to the limitations of the BPMN itself, as
well as lack of a clear integration between the BPMN and
rule semantics. The process model also introduces some ex-
tra information (see Process Vehicle Insurance Application),
not present in the rules, that can be possibly useful for the
implementation, but there is no clue on how this information
could actually be used. It is also worth pointing out, that for
a classic rule engine the process model is mostly both re-
dundant and useless anyway, because the rules should carry
the whole information. On the other hand, the process-based
perspective also implicitly offers a hierarchical perspective
which is valuable for the HeKatE approach, as well as some
newer rule engine tools, such as RuleFlow available in the
new 4th version of the Drools platform.

Another inconsistency concerns the so-called business
concepts model. This model is somehow inferred from the
rules, and processes. However, it contains much more infor-
mation than these models, and one can only imagine, that
some of this information has been inferred by the designers,
whereas other comes form additional “stories” told by the
customers. From the formal point of view, the relation of
concepts in the model is unclear and inconsistent with the
concepts present in rules and process.

We shall now move to the UServ design with the HeKatE
ARD+ method, that offers a hierarchical conceptual design
solution for rules, and possibly captures all of the informa-
tion needed to build a rule-based system for the UServ. In
here the Prolog prototyping environment will be used.

UServ Design with ARD+
Let us begin with the highest, most general concepts about
the UServ company. The processes and rules use abbrevia-
tions previously defined. We will begin with the hierarchical
process model, which in a general sense is similar to the hier-
archical ARD+ approach. On this level (L0), corresponding
to the PM diagram at process model, we may state that the
system provides a NewPolicy, for some customers. The
level 0 is described in Prolog as:
ard_att_add(’NewPolicy’),
ard_property_add([’NewPolicy’]).

Manual refactoring

Manual refactoring

NewPolicy

PolicyScore

Policy

Premium

PolicyScore
Policy

Premium

Policy

Premium

EligibilityScore

AutoEligibility

DriverEligibility

Policy

Premium
EligibilityScore

AutoEligibility

DriverEligibility

Policy

Premium
EligibilityScore

AutoEligibility

DriverEligibility

Policy

Premium
EligibilityScore

AutoEligibilityScore

Car

DriverEligibilityScore

Driver

Policy

Premium
EligibilityScore

AutoEligibilityScore

DriverEligibilityScore

PotentialTheftCategory

PotentialOccupantInjuryCategory

DriverAgeCategory

DrivingRecordCategory

Policy

Premium
EligibilityScore

AutoEligibilityScore

DriverEligibilityScore

PotentialTheftCategory

PotentialOccupantInjuryCategory

DriverAgeCategory

DrivingRecordCategory

EligibilityScore Policy

theAutoEligibilityScore

theDriverEligibilityScore

thePremium

AutoPremiums

AutoDiscounts

DriverPremiums

MarketSegmentDiscounts

potentialTheftRating

carConvertible

carPrice

carModel

carOnList

potentialOccupantInjuryRating

carAirbags

carRollBar

driverAgeRating

driverSex

driverAge

trainingCertificate

driverQualificationaccidentsNumber

violationsNumber

convictedDUI

Policy

Premium
EligibilityScore

AutoEligibilityScoreCar

DriverEligibilityScoreDriver

Policy

Premium
EligibilityScore

potentialTheftRating

carConvertible

carPrice

carModel

carOnList

theAutoEligibilityScore

potentialOccupantInjuryRating

carAirbags

carRollBar

driverAgeRating

driverSex

driverAge

trainingCertificate

theDriverEligibilityScore

driverQualification

accidentsNumber

violationsNumber

convictedDUI

Figure 1: UServ ARD+ model

While analyzing the PA and PR diagrams one can see that
besides a Policy, we also get a Premium. Next, look-
ing at the PP diagram, we see that only thing we learn, is
that the policy decision and the premium is based on the
PolicyScore. So on this level (L1) the general concept
of Policy gets finalized to these three concepts. The final-
ization on level 1 corresponds to:
ard_att_add(’Policy’),
ard_att_add(’Premium’),

ard_att_add(’PolicyScore’),
ard_finalize(

[’NewPolicy’],
[’PolicyScore’,’Policy’,’Premium’]).

To capture the functional dependency between them, we
move to the next level (L2), where a single ARD+ property
grouping them, gets split into two functionally dependant
properties. The split in Prolog looks like this:
ard_split(

[’PolicyScore’,’Policy’,’Premium’],
[[’PolicyScore’],[’Policy’,’Premium’]],
[
[[’PolicyScore’],[’Policy’,’Premium’]]
]).

Analyzing the PS diagram, it can be observed, that
the PolicyScore, involves the EligibilityScore,
AutoEligibility and DriverEligibility; this is
the third (L3) level of the ARD+ model, reached through fi-
nalization. To capture the functional dependency between
these three a split is needed, observed in the level 4.

Looking at the PS diagram, we see, that the
AutoEligibility and DriverEligibility
are functionally independent, this is captured
through a split on the level 5 of ARD+. Calcu-
lating the actual AutoEligibilityScore and
DriverEligibilityScore is done using infor-
mation about the Car and Driver, see level 6, for
finalizations (by the way, the names “Auto” and “Car”
are used interchangely in the original study, which is
misleading). We can see that there is a functional depen-
dency between AutoEligibilityScore and Car, and
DriverEligibilityScore and Driver respectively,
captured by the split at level 7.

This is an interesting point in the original study, since
the formalism used so far, that is the BPMN cannot ex-
press a more detailed information. This the point, where the
designer should somehow relate and connect the declara-
tive rule model to the hierarchical sequential process model.
This is the very point where a clear semantic gap between
these two views is exposed. However, this gap is not present
in the ARD+. We shall continue with our analysis, using the
rulesets mentioned previously. Let us focus on the car, that
is the REA rulesets.

The actual notion of Car is related
to the PotentialTheftCategory and
PotentialOccupantInjuryCategory. Now,
with the RED ruleset, Driver is re-
lated to the DriverAgeCategory and
DrivingRecordCategory. Both of these specifi-
cations are captured with the finalization in level 8. In both
cases these aspects are functionally independent, as seen in
the level 9.

Getting into more details of rulesets REA and
RED, and analyzing the actual attributes of the rules,
we can introduce the final concepts, that are in
fact the so-called physical attributes in the ARD+
method. These are carConvertible, carPrice,
carModel, carOnlist, that determine the value
of the potentialTheftRating, carAirbags,

carRollBar, that determine the value of the
potentialOccupantInjuryRating, for the
REA set, and sex, age, trainingCertificate,
that determine the value of the driverAgeRating,
accidentsNumber, violationsNumber,
convictedDUI that determine the value of the
driverQualification, for the RED set. These
get introduced through finalization on level 10, and split to
show the dependence on next levels.

In the RP set the pricing rules are. These are
used to calculate the premium. The Premium is in
fact thePremium AutoPremiums, AutoDiscounts,
DriverPremiums, and MarketSegmentDiscounts.
The premium only gets calculated when the Policy is ac-
tually granted, so the policyDecision is positive. These
attributes get introduced in the right part of the ARD+ dia-
gram, in the Policy,Premium property, at level 12; fur-
thermore they should be splited on the next level.

This is the point, at which the straightforward design en-
counters problems. While analyzing the RP set, it can be re-
alized, that some important dependencies have been missed.
These are the dependencies between AutoPremiums and
attributes of the car, as well as DriverPremiums and at-
tributes of the driver. They should have been introduced
somewhere at the higher level. This is where the automatic
refinement feature of ARD proves to be helpful.

Automated Design Refinement
In order to represent the missing dependencies a manual
refactoring is used as follows:
ard_depend_add(
[’potentialOccupantInjuryRating’],
[’thePremium’,’AutoPremiums’,’AutoDiscounts’,
’DriverPremiums’,’MarketSegmentDiscounts’]).

ard_depend_add([’driverAgeRating’],
[’thePremium’,’AutoPremiums’,’AutoDiscounts’,
’DriverPremiums’,’MarketSegmentDiscounts’]).

They are indicated on the lowest level observed in Fig. 1
Now the question is how this change can be integrated with
the existing model.

In the hierarchical ARD+ model only the lowest level is
stored. Every split or finalization is recorded in the TPH.
Using this information any previous level can be integrated.
Moreover, modifications introduced at the lowest level can
be automatically integrated at higher levels. So, in case
when some dependencies or properties have been missed
during the design, they can be added at the lowest level,
and be automatically integrated into the design (in case of
properties the TPH needs to be modified).

Methodological Observations
Number of observations on the ARD+ process can be made.

The ARD design is not deterministic one, for the very
same system, the designer can make different decisions abut
the actual sequence of split or finalizations. This also means,
that the number of design steps, or levels can be different –
it is possible to transform every node of the diagram at every
level, but it does not mean it has to be done.

NewPolicy

PolicyScore

Policy

Premium

Policy

Premium
PolicyScore

Policy

Premium

EligibilityScore

AutoEligibility

DriverEligibility

EligibilityScore
Policy

Premium

AutoEligibility

DriverEligibility

EligibilityScore
Policy

Premium

AutoEligibility

DriverEligibility

EligibilityScore
Policy

Premium

AutoEligibilityScore

Car

DriverEligibilityScore

Driver

EligibilityScore
Policy

Premium

AutoEligibilityScore

DriverEligibilityScore

Car

Driver

EligibilityScore
Policy

Premium

AutoEligibilityScore

DriverEligibilityScore

PotentialTheftCategory

PotentialOccupantInjuryCategory

DriverAgeCategory

DrivingRecordCategory

EligibilityScore
Policy

Premium

AutoEligibilityScore

DriverEligibilityScore

PotentialTheftCategory

PotentialOccupantInjuryCategory

DriverAgeCategory

DrivingRecordCategory

EligibilityScore Policy Premium

AutoEligibilityScore

DriverEligibilityScore

potentialTheftRating

carConvertible

carPrice

carModel

carOnList

potentialOccupantInjuryRating

carAirbags

carRollBar

driverAgeRating

driverSex

driverAge

trainingCertificate

driverQualification

accidentsNumber

violationsNumber

convictedDUI

EligibilityScore Policy

theAutoEligibilityScore

theDriverEligibilityScore

thePremium

AutoPremiums

AutoDiscounts

DriverPremiums

MarketSegmentDiscounts

potentialTheftRating

carConvertible

carPrice

carModel

carOnList

potentialOccupantInjuryRating

carAirbags

carRollBar

driverAgeRating

driverSex

driverAge

trainingCertificate

driverQualificationaccidentsNumber

violationsNumber

convictedDUI

Figure 2: Automatically refined diagram

The transformations of not neighboring nodes are inde-
pendent of each other, so the sequence of transformations
can be different. The automatic collapsing of the diagram
(recreating higher levels using TPH) can in fact generate dif-
ferent diagram than the original one. So, in fact, collapsing,
and then recreating the diagram back to the bottom level can
be thought of as a process of the minimization.

Having a system description given, there are number of
approaches to the design. In the study presented in this pa-
per, the design process was mimicking the original design
with BPMN in order to compare the two approaches. An-
other reason was actually to get the final rules present in the
study. But there could be another approach to the UServ de-

sign, where the model is build the design from scratch, sim-
ply by reading the rules, and neglecting the BPMN model at
all. In this case notions of Client, Car, and Driver could be
captured on a higher abstraction level.

A general rule concerning transformation sequence can be
formulated: “finalize to physical attributes as late as possi-
ble”. As long as there are conceptual attributes describing a
property, there is a possibility of further specification, thus
discovering, or specifying new knowledge.

Upon a finalization transformation number of attributes
describing a property increases. For a split transformation
number of properties increases since the source property is
split into some number of properties which is indicated by
multiple vertices in the diagram.

An interesting concept is related to the ARD design pat-
terns, that is some repeating patterns in designing systems
with ARD. Some typical split patterns can be observed,
as well as split–finalize sequences. This is a research in
progress, that definitely needs more use cases.

In future ARD+ tools should provide heavy visual hint-
ing, guiding the designer through possible diagram transfor-
mations, including the support for the patterns mentioned
above. The tools should also support bidirectional design,
where the designer is able to see the results of the refactoring
on-line. These feature is currently only partially supported
by the Prolog prototype, but is fully doable.

For importing existing rule-based systems, a semi-
automatic ARD model building could be supported. In this
case, the model could be built from original rules by a back-
wards chaining generator, that would analyze and identify
functional dependencies, and generate new conceptual at-
tributes (this idea is actually similar to unification in Prolog).

The focus of the ARD is on the design phase, and the ini-
tial transition from user-provided specification to rule spec-
ification that connects rules with concepts. So it is the
phase of a conceptual design, that is also addressed by the
SBVR (OMG 2006b). The main difference is, that SBVR is
based on the MOF, and uses UML-derived constructs. While
it facilitates the integration with UML-centric design tools
and approaches, it also makes it inherit the problems UML
has. Most of the complex designs are created gradually, so
the design method should take the design process into ac-
count, and the tools used should effectively support it. It is
worth noting that UML, does not support the process at all.
This makes it difficult to use in real-life for both SE and KE.

Future Work
The paper discusses practical approach to the conceptual de-
sign of business rules. In the paper a new refined designed
method, called ARD+ is applied to the classic benchmark
case study from the Business Rules Group. The method,
originally aimed at the classic rule-based systems, aims at
providing a unified, hierarchical design, superior to this of
the BPMN, or SBVR methods.

The original contribution of this paper consists in: an in-
depth discussion of the UServ, a classic and benchmark busi-
ness rules case study, that outlines some of the limitations of
the original design, from the knowledge engineering point

of view, an application of the ARD+, a conceptual design
tool within the HeKatE methodology, and practical guide-
lines for the future design tools for ARD+.

The ARD+ version presented in this paper is a rework of
the original prototype method. Future work will be mainly
focused of the more complex design cases, that would allow
for developing practical refactoring solutions within ARD+.
One of the approaches is to formulate semi-formalized de-
sign minipatterns, used at the ARD+ level transitions.

Acknowledgements The paper is supported by the
HeKatE Project funded from 2007–2009 resources for sci-
ence as a research project.

References
BRForum. 2005. Userv product derby case study. Techni-
cal report, Business Rules Forum.
Ligęza, A., and Nalepa, G. J. 2007. Knowledge repre-
sentation with granular attributive logic for XTT-based ex-
pert systems. In Wilson, D. C.; Sutcliffe, G. C. J.; and
FLAIRS., eds., FLAIRS-20 : Proceedings of the 20th In-
ternational Florida Artificial Intelligence Research Society
Conference : Key West, Florida, May 7-9, 2007, 530–535.
Menlo Park, California: Florida Artificial Intelligence Re-
search Society.
Ligęza, A. 2006. Logical Foundations for Rule-Based Sys-
tems. Berlin, Heidelberg: Springer-Verlag.
Nalepa, G. J., and Wojnicki, I. 2007. Proposal of vi-
sual generalized rule programming model for Prolog. In
Seipel, D., and et al., eds., 17th International conference on
Applications of declarative programming and knowledge
management (INAP 2007) and 21st Workshop on (Con-
straint) Logic Programming (WLP 2007) : Wurzburg, Ger-
many, October 4–6, 2007 : proceedings : Technical Report
434, 195–204. Wurzburg : Bayerische Julius-Maximilians-
Universitat. Institut für Informatik: Bayerische Julius-
Maximilians-Universitat Wurzburg. Institut für Informatik.
Nalepa, G. J., and Wojnicki, I. 2008a. An ARD+ de-
sign and visualization toolchain prototype in prolog. In
FLAIRS2008. submitted.
Nalepa, G. J., and Wojnicki, I. 2008b. Towards formaliza-
tion of ARD+ conceptual design and refinement method.
In FLAIRS2008. submitted.
OMG. 2006a. Business process modeling notation (bpmn)
specification. Technical Report dtc/06-02-01, Object Man-
agement Group.
OMG. 2006b. Semantics of business vocabulary and busi-
ness rules (sbvr). Technical Report dtc/06-03-02, Object
Management Group.
Ross, R. G. 2003. Principles of the Business Rule Ap-
proach. Addison-Wesley Professional, 1 edition.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 2nd edition.
von Halle, B. 2001. Business Rules Applied: Building
Better Systems Using the Business Rules Approach. Wiley.

