
I m p l e m e n t a t i o n of a P r o l o g - I N G R E S I n t e r f a c e

S. Ghosh, C.C. Lin and T. Sellist

Department of Computer Science
University of Maryland
College Park, MD 20742

A B S T R A C T

This report describes a working prototype of a Prolog-INGRES interface based on exter-
nal semantic query simplification. Semantic query simplification employs integrity con-
straints enforced in a database system for reducing the number of tuple variables and
terms in a relational query. This type of query simplifier is useful in providing very high
level user interfaces to existing database systems. The system employs a graph theoretic
approach to simplify arbitrary conjunctive queries with inequalities. One very interesting
feature of the system is to provide meaningful error messages in case of an empty query
result resulting from contradiction. In addition to data, rules are stored in the database
as well and are retrieved automatically if the Prolog program references them but they
are not defined in the Prolog rulebase.

? Also with University of Maryland Systems Research Center and Institute for Advanced Computer Studies (UMIACS).

SIGMOD R E C O R D , Vol. 17, No. 2, June 1988 77

1. In troduct ion
Large scale knowledge bases require more intelligent processing than current Data Base

Management Systems (DBMS) can offer as well as more intelligent access to large scale data-
bases than current expert systems offer. Therefore, it is widely recognized that we need to
somehow combine the intelligent query processing part of expert systems with the efficient access
techniques of DBMS's [KERS86a,KERS86b]. Integrating logic programming (in particular Pro-
log) and databases looks very promising since both logic programming and relational databases
are related by their common ancestry of mathematical logic [GALL84].

Prolog alone cannot meet the requirement of support ing large databases. However, it con-
s t i tutes an at tractive domain-oriented query language for relational databases, where the
specification of joins is easier than in tuple-oriented languages. The power of Prolog as u pure
logic programming language (Horn Clauses only) surpasses that of relational calculus, since it is
relationally complete. Besides, the power of recursion in Prolog makes it superior to relational
calculus in applications with recursive query requirements. However, Prolog is more than just a
logic programming language, since it offers features and embodies an execution model that turns
it into a general-purpose programming language. This generality adds to Prolog's desirability as
a practical database language, since complete applications can now be developed in it. This con-
trusts with the current approach to the development of database-intensive applications that uses
u general purpose programming language with embedded database query s tatements .

A system which combines a Prolog front-end with a database back-end appears to be a
very promising vehicle for developing database and knowledge-based applications and has
received u lot of at tent ion in the last few years [BROD86,CERI86,CHAN86,
JARK84,JARK86,SCIO86]. An obvious benefit expected is faster execution of Prolog programs,
since database predicates can be off-loaded to the database system for more efficient, and possi-
bly parallel, execution. This is particularly useful, when the ability is needed of making infer-
ences over large volumes of data, such as in data- intensive expert systems. The second benefit
lies in the enhanced functionality of the database system, due to the newly accrued inferential
capability. Also in such a system, programmers will be able to develop the entire application in
Prolog (a complete programming language) whereas presently they must resort to a conventional
programming language with an embedded query language.

In this paper we report on the implementat ion of a scheme for integrat ing Prolog with a
relational database system, INGRES, based on the ideas of [JARK84,JARK86]. In this approach
there is min imum interaction between the two systems, achieved by an optimizing translation
mechanism. Using a variable free subset of Prolog as an intermediate language makes the query
simplifier independent of the input and target database language. In addition to this sophisti-
cated optimizer, we have added the capability of storing not only data but rules as well in the
database. This adds persistence to Prolog, in the sense that after a session is over and a new
session starts, the user needs not re-assert the knowledge asserted in the past.

This report focuses mainly on describing the querying facility of the system. In Section 2,
we describe the overall architecture. Section 3 discusses the implementat ion of the query
simplifier while Section 4 presents the implementat ion of the module for handling rules. Finally
we conclude in Section 5 with a summary and current work on the system.

2. Sys tem Descr ipt ion
The configuration of the system is shown in Figure 1. In the following sub-sections we dis-

cuss the Data and Rule Definition and Query facilities, and the way Prolog communicates with

78 S IGMOD R E C O R D , Vol. 17, No. 2, June 1988

Query

Definitions I

Rule-Interface

/
Meta- ~ Rule-Processor r /

Interpreter

Simplifier Data-Processor Ii~

l
Data and Rule /

Y Definition Handler

INGRES

Figure 1: System Architecture

INGRES.

2.1. D a t a a n d R u l e D e f i n i t i o n

This interface allows the user to define a database schema, including relations , indices etc.
Moreover, the user can assert key dependencies, more general functional dependencies, referential
integrity and value bound constraints. For example, the following define the example database
used throughout this presentation [JARK86]

deflne_schema(employee, [eno, 12, ename, c20, salary, 12, dno, 12]).
deflne_schema(department, [dno, 12, function, c4, mgr, 12]).
deflne_keydep (employee, [eno]) .
deflne_keydep (department, [dno]) .
deflne_funcdep (employee, [shame] , [eno]) .
deflne_funcdep (department, [mgr] , [dno]) .
deflne_valuebound (employee, salary, i0000,90000) .
define_reflnt(employee, [dno], department, [dno]).
def±ne_reflnt(department, [mgr], employee, [eno]).

Some of these requests are directly translated to INGRES commands, like for example the com-
mand for creating a relation. The constraints are stored in relations in the database in a way
similar to the one we use to store rules (see section 4). We will not elaborate more on the
definition facility. We turn now to describe the more interesting part of the system, that is han-
dling user requests.

SIGMOD R E C O R D , Vol. 17, No. 2, June 1988 79

2.2. Querying the System

User queries are first processed by the Meta-Interpreter which examines if all rules needed
to process the given request are already asserted in Prolog. Rules not currently in the Prolog
rule base are passed to Rule-Processor which in turn asks the Rule-Interface to retrieve these
rules from the INGRES database. The Simplifier is used to optimize and simplify queries using
functional dependencies, referential integrity and value bound constraints. The Data-Processor
extracts all database references and generates a QUEL command to retrieve the data from
INGRES. The translation from Prolog queries to QUEL commands is achieved by means of an
intermediate language used by the Simplifier, called DBCL. Hence, processing can be partitioned
into three major components: the translation of a Prolog query to DBCL statements,
simplification of the DBCL statements and the translation of the optimized DBCL statements to
queries in the target database language. There is also another module not shown in Figure 1,
the Attribute-Processor, which is an initialization routine that at s tar t -up time retrieves all the
information regarding user relations currently stored in INGRES and needed by the Data-
Processor.

2.3. Communication Between Prolog and INGRES

The major problem in interfacing Prolog and INGRES is how to call INGRES from Prolog
and get the result back. The first problem can be solved easily by using the "system" predicate.
For example, s y s t e m (" l s ") will list the current directory. To call INGRES, s y s t e m (" i n g r e s
DBname") is enough. However, there is no easy way to pass commands to INCRES from Prolog,
therefore, INGRES commands are passed through a file, say, ingres.command. Thus, the whole
calling sequence is s y s t e m (" l n g r e s DBname - s < lngres .command") . T h e - s option prevents
INGRES from printing any message on the screen, which is not needed in this case.

The second and more difficult problem is how to get the result that is retrieved from
INCRES back to Prolog. In C-Prolog 1.4, the version of Prolog we use in the current implemen-
tation, there is no system function provided for communication with other processes, except the
system predicate. The only resort is then to ask INCRES to write the result into a file that can
be then read by Prolog. Therefore, getting a result from INGRES is really a two-step process:
first INCRES retrieves the necessary information specified by the command file, stores it in a
temporary relation and finally copies this temporary relation to a plain Unix file. Second, Prolog
reads the file and asserts the information in its database. The reason we have to copy the tem-
porary relation to a Unix file is because an INGRES relation file is readable only by INGRES
itself.

Invoking INGRES in the way described above is very time-consuming because INGRES has
to be setup and terminated for each request from Prolog. A more efficient method is to set up a
pipe between Prolog and INGRES which cannot be done in C-Prolog 1.4. However, the Rule-
Processor does not use this method because of performance considerations, namely the fact that
rules are needed at various places during query processing. Clearly, one does not want to access
INGRES every time a rule is needed. For that reason we pre-fetch all rules needed to process a
user query. A C program, the Rule-Interface, is provided to retrieve all relevant rules from
INGRES. The Rule-Interface is described in more detail in Section 4.

3. Q u e r y Simpli f ier

The query simplification process is based on a graph-theoretic approach similar to that
described in [JARK86] and is shown in Figure 2. The simplifier utilizes integrity constraints
enforced in the DBMS for transforming queries into a form that can be executed more efficiently.

80 SIGMOD R E C O R D , Vol. 17, No. 2, June 1988

input query language (Prolog)
]
]
] METAEVALUATE

I
i

dbcall language

I
t
I GENERATE TABLEAU

I
I

internal graph representation

on 'blackboard' <

I
I
I TRANSLATE
i
]

DBMS query language

SIMPLIFY Knowledge
. > base

Figure 2: Structure of the semantic query simplifier [JARK86]

We have considered only those integrity constraints which do not depend on the actual database
state at any time. In particular we have considered functional/key dependencies, referential con-
straints and range (or value bounds) constraints on ordered domains. The query simplifier con-
sists of two translation mechanisms and a knowledge base. The first translation is the meta-
evaluation of the Prolog query into an intermediate language, DBCL, which is set oriented and
uses only base relations. The purpose of this is to collect tuple oriented Prolog requests to form
set oriented queries.
form:

or

After this translation, each query is a list of "dbca l l " predicates of the

dbcall(Relatlon name,List of tableau entries)

dbcall(Operator,Left_operand,Right_operand)

where Operator can be one of: equal,notequal,less,lessequal,greater,greaterequal.

The second translation is the translation of the optimized DBCL statements into queries in the
target database language, in our case QUEL. The knowledge base contains a schema definition
and predicates describing the integrity constraints in the format described in [JARK86]. Exam-
ples (taken from [JARK86]) of knowledge base, Prolog view and DBCL query are shown in Fig-
ures 3, 4 and 5 respectively.

3.1. A Graph Based S impl i f i cat ion A l g o r i t h m

We have implemented in Prolog the simplification algorithm of [JARK86]. The query
simplifier uses a graph representation for representing inequalities and dependencies. Inequalities

SIGMOD R E C O R D , Vol. 17, No. 2, June 1988 81

s c h e m a (e m p l o y e e , [e n o , e n a m e , s a l a r y , d n o]) .
k e y d e p (e m p l o y e e , [e n o]) .
f u n c d e p (e m p l o y e e , [e n a m e] , [e n o]) .
v a l u e b o u n d (e m p l o y e e , s a l a r y , 1 0 0 0 0 , 9 0 0 0 0) .

s c h e m a (d e p a r t m e n t , [dno, f u n c t i o n , mgr]) .
keydep (d e p a r t m e n t , [dno]) .
f uncdep (d e p a r t m e n t , [mgr] , [dno]) .

refint(employee, [dno] ,department, [dno]).
refint(department, [mgr], employee, [eno]).

Figure 3: Example of a knowledge base for the query simplifier

works d i r f o r (X , Y) : -
employee (Enol, X, Sall, D),
department (D, Fct, M),
employee (M, Y, Sal2, Dnol),
notequal (X, Y) .

Figure 4: Example Prolog view

[dbcall(employee, [v enol,t X,v sall,v dnol]),
dbcall (department, [v_dnol, v_fctl, v_mgrl]),
dbcall (employee, [v_mgrl, smlley, v_sal2, v_dno2]) ,
dbcall (employee, [v_eno2, t X, v_sal3, v_dno3]),
dbcall (notequal, t X, smlley),
dbcall (lessequal, v sal3,40000)]

Figu re 5: DBCL equivalent of the query "Who works directly for Smiley and
makes less than or equal to 40000" and obtained by meta-evaluating the query

:-(works dir for(t X,smiley),employee(,t X,S,_),lessequal(S,40000))

are represented by explicit edges in the graph and dependencies are represented by implicit
edges. The DBCL query is converted into graph form as in [JARK86]. The nodes in the graph
correspond to all entries appearing in the DBCL query plus a node O(d} for each ordered domain
d. Edges correspond to the comparisons in the DBCL query. In addition to what is reported in
[JARK86], we have implemented limited optimization for queries with notequality constraints.

3.2. Inequal i ty O p t i m i z a t i o n

Notequal--free Optimization

We have considered notequality separately because generalized inequality optimization is NP-
hard [ROSES0]. The graph based algorithm for inequality optimization can be described as fol-
lows:

82 SIGMOD RECORD, Vol. 17, No. "2, June 1988

1. Remove all multiple edges between all pairs of nodes.

2. Find the shortest distance between all pairs of nodes [FLOY62].

3. If a negative length cycle is found then stop with an error message and empty query
result. The query unsatisfiable.

4. Remove all variables from the graph that occur in zero length cycles with some node
O(d) and rename variables to a constant corresponding to the length of the path
from each node on the cycle to node O(d).

5. For each set of variables which belong to the same zero length cycle, retain in the
graph one of the variables and rename the rest of the variables to the name of the
variable retained.

6. Delete all redundant edges from the graph. An edge from node x to node y with
length c is redundant if there exists a path different from this edge from x to y with
length less than or equal to c.

Notequal Optimization

We have avoided generalized notequal optimization because it incurs exponential time. Instead
we have considered only special cases. For example if during the simplification process we find
that there exists a path from node x to node y of length c (i.e x_< y+c) and there is a notequal
comparison (x~y+c), then the former condition is replaced by a sharper one (x<y+c). An
example of inequality optimization is shown in Figure 6. The first inequality
(g r e a t e r , v _ s a 1 3 , 5 0 0 0) is removed since it is implied by the value bound on s a l a r y attribute

a query with redundant comparisons

[dbcall (employee, [v_enol, t_X, v_sail, v_dnol]),
dbcall (department, [v_dnol, v_fctl, v_mgrl]),
dbcall (employee, [v_mgrl, v_man, v_sal2, v_dno2]),
dbcall (employee, [v_eno2, t_X, v_saI3, v_dnoS]),
dbcall(greater,v_salS,5000),
dbcall(equal,v_man,smiley),
dbcall(lessequal,v_sai3,40000),
dbcall(lessequal,v_sai3,60000),
dbcall(notequal,v_sal3,40000),
dbcall(notequal,v_sai3,60000)]

equivalent query after inequality optimization

[dbcall(employee,[v enol,t X,v sall,v dnol]),
dbcall(department,[v_dnol,v_fctl,v_mgrl]),
dbcall(employee,[v_mgrl,smiley,v_sal2,v_dno2]),
dbcall(employee,[v_eno2,t X,v sal3,v dno3]),
dbcall(lessequal,v_sa13,39999~]

Figure 6: Example of inequality optimization

SIGMOD R E C O R D , Vol. 17, No. 2, June 1988 83

us given in Figure 3. (l e s s e q u a l , v _ s a l 3 , 6 0 0 0 0) is removed since it is implied by
(l e s s e q u a l , v _ s a l 3 , 4 0 0 0 0) . v_man is renamed to sml ley at step 5 of the algorithm.
(no t equa l , v_sal3 ,40000) and (l e s s e q u a l , v_sal3 ,40000) are combined to
(l e s s e q u a l , v _ s a 1 3 , 3 9 9 9 9) . (no t equa l , v_sa l3 ,60000) is discarded because it is implied by
(l e s s e q u a l , v_sal3 ,39999) .

3.3. F D / K D O p t i m i z a t i o n

The congruence closure of the FD/KD graph is computed in a breadth first fashion by
applying a variation of the first chase algorithm [DOWN80]. The algorithm terminates when no
further FD or KD is applicable to an entry in the DBCL query. As an example, consider the
simplified DBCL predicate in Figure 6. At level 0, only one functional dependency

funcdep(employee, [ename] , [eno])

is applicable, leading to the renaming of v eno2 by v enol. At level l,the key dependency for
the employee relation becomes applicable, leading to the removal of the fourth row and renaming
of v_sall to v_sal3 in the first row. The simplified query appears in Figure 7. The applica-
tion of a functional or key dependency results in adding edges to the graph (because two ele-
ments are made equal). Due to this change in the graph, the inequality optimization is examined
again and thus, these two optimization steps proceed in an interleaved fashion until nothing
changes in the graph.

3.4. Referential Integrity Optimization

The application of referential integrity constraints allows the deletion of certain "dangling"
rows from the DBCL query and thus reducing the number of variables and join operations in the
resulting query. The algorithm works as follows

1. Check all rows of the DBCL query to see if a row dangles [JARK84]
if 'yes' then go to step 2
else stop.

2. Delete the dangling row if it is deletable [JARK84].
go to step 1.

As an example consider the DBCL query in Figure 8. The third row dangles; it is also deletable
since v_mgrl appears in the second row and there is an applicable referential integrity constraint
between mgr in depar tment and eno in employee. After the deletion of the third row, the
second row also dangles and is also deletable. The final DBCL query is shown in Figure 9.

[dbcall (employee, [v_enol, t_X, v_sal3, v_dnol]),
dbcall (department, [v_dnol, v_fctl, v_mgrl]),
dbcall (employee, [v_mgrl, smiley, v_sal2, v_dno2]),
dbcall (lessequal, v_sal3,39999)]

Figure 7: Simplified version of the DBCL query of Figure 6
after application of FD/KD's

84 SIGMOD R E C O R D , Vol. 17, No. 2, June 1988

[dbcall(employee,[v_enol,t_X,v_sall,v_dnol]),
dbcall(department,[v dnol,v_fctl,v_mgrl]),
dbcall(employee,[v_mgrl,v_enamel,v_sal2,v_dno2]),
dbcall(employee,[v_eno2,smiley,v_salS,v_dnol]).

Figure 8: Example of DBCL query beforereferentialintegrity optimization

[dbcall(employee, [v enol,t X,v sail,v dnol]),
dbcall (employee, [v_eno2, smiley, v_sal3, v_dnol]) .

Figure 9: Simplified version of the DBCL query of Figure 8
after application of referential integrity constraints

4 . R u l e - P r o c e s s o r a n d R u l e - I n t e r f a c e

As mentioned in the introduction, in some applications which contain huge sets of rules,
Prolog may not serve very well because it may not be able to store all the rules in the main
memory. As expert sys tems become more and more complicated, this kind of application would
be very common [HAYE87]. To make Prolog useful in this case, we need a way to store rules in
a t radit ional da tabase and retrieve them dynamical ly when required by the user query. To do
this, a meta - in te rpre te r (shell) as s ta ted in [STER86] is a good candidate for this purpose. How-
ever, the shell must examine the existence of rules required by the query before trying to solve
the goal(s). Rules mentioned but not defined should be retrieved from the da tabase and asserted
in the Prolog database. In the following sub-sect ions we describe our solution to the problem.

4 .1 . H o w t o S t o r e R u l e s in I N G R E S

Two relations are needed to represent rules in an INGRES database, namely RULE and
RULEBODY. The schema of RULE is

ruleno
head
numarg

arg
access

rule number
predicate name
number of arguments

argument list (enclosed by parentheses)

access indicator, 0 if not accessed, 1 otherwise

and the schema of RULEBODY is

For

ruleno
bodyno
pname
numarg
arg

example, the rule

a n c e s t o r (X , Y) : - p a r e n t (X , Y) .
a n c e s t o r (X , Y) : - p a r e n t (X , Z) ,

rule number

body number
predicate name
number of arguments

argument llst (enclosed by parentheses)

a n c e s t o r (Z, Y).

may be represented as

S I G M O D R E C O R D , V o h 17, No. 2, J u n e 1988 85

RULE Table

ruleno head numarg arg access

1 ancestor 2 (X,Y) 0

2 a n c e s t o r 2 (X,Y) 0

RULEBODY T a b l e

ruleno bodyno pname numarg arg

1 1 parent 2 (X,Y)

2 1 p a r e n t 2 (X,Z)

2 2 a n c e s t o r 2 (Z,Y)

The original rule can be easily reconstructed by taking the natural join of RULE and RULEBODY
on field r u l e n o . The a c c e s s bit is used to tell whether the corresponding rule has been
retrieved into the Prolog rule base or not. If a c c e s s = " 0 " then the rule has not been retrieved
yet, in other words, it is not defined in Prolog, thus should be accessed if needed.

4 .2 . T h e S H E L L

The SHELL used in the current implementat ion is basically the same as Program 12.6 in
[STER86] with some modification. However, before trying to solve a goal, it must first search
the rulebase to see if tha t predicate is defined. If the predicate exists, it can be culled directly as
usual, otherwise the SHELL will first call the Rule -Processor to retrieve the rule and then apply
it. For example, if the query is

fib(5,X), factorial(X,Y), plus(Y,lO,Z).

and the predicate f a c t o r i a l is already defined while no definition is given for f i b and p lu s ,
the SHELL will call the Rule -Processor which will in turn call a C routine (the Rule-Interface)
to retrieve the definition of f l b with arity 2 and p l u s with ari ty 3 from INGRES. The reason
that we don ' t want Prolog to call INGRES directly in this case is merely performance. To get
the definition of a rule, the system may have to call INGRES several t imes before all sub-ru les
are retrieved. On the other hand, since C can talk to INGRES directly, we only have to call
INGRES once to get all the rules if we use C as an intermediate interface between Prolog and
INGRES. The flattening process can be done in C quite easily which may be very difficult, if not
impossible, to be done in QUEL due to the absence of repeat commands.

4.3. R u l e - I n t e r f a c e

The way a C routine can talk to INGRES is by using EQUEL, i.e. by embedding QUEL
commands in C routines. The main function of Rule-Inter face is to retrieve rules needed by Pro-
log which are passed as command line arguments. For example, to retrieve rules f i b and p l u s
of the above example, the calling method is

rule fib 2 plus 3

where 2 and 3 are the arities of fib and plus respectively. Only rules with the same arity as

86 S I G M O D R E C O R D , Vol . 17, No. 2, J u n e 1988

specified will be retrieved.

Once retrieved, all rule definitions needed are wri t ten into a file called, say r u l e . r e s u l t .
The format of entries in this file is

t u p l e (r u l e n o , head , a rg , bodyno, pname, burg)

where head is the name of predicate at the left hand side of the rule and bodyno and pname are
the sequence number and name of predicates at the right hand side of the rule respectively, a rg
and burg are arguments enclosed by parentheses for predicates at the LHS and RHS of the rule
respectively. For instance, the a n c e s t o r example will return 3 tuples

t u p l e (1 , ' a n c e s t o r ' , ' (x,Y) " ,1 , " p a r e n t ' , ' (x,Y) ") .
t u p l e (2 , " a n c e s t o r ' , " (x,Y) " ,1 , " p a r e n t " , " (x , z) ") .
t u p l e (2, " a n c e s t o r " , " (x, Y) ' , 2, ' a n c e s t o r " , " (Z,Y) ') .

The Rule-Interface also provides a function "reset rule" to reset the access bits of all rules in
the relation RULE. This function is called every t ime one s tar ts up a session with the system.
Another function of the Rule-Interface, "define rule", accepts rule definitions from the user and
inserts them into the RULE and RULEBODY relations.

4.4. R u l e - P r o c e s s o r

The main function of the Rule-Processor is to check if all rules needed to process a query
exist in Prolog's rulebase; if not, it calls the Rule-Interface to retrieve them from the database
and then asserts them into Prolog's rulebase. To reconstruct rules retrieved from INGRES, the
file r u l e . r e s u l t is read and t u p l e () predicate entries are asserted. Rules can be grouped
together by r u l e n o in the t u p l e predicate and then the whole rule is wri t ten to another file
called r u l e b a s e . After all rules have been reconstructed, r u l e b a s e is then consulted and the
rules are asserted to Prolog's rulebase.

It may seem that writ ing to the second file, r u l e b a s e , is not really needed in the sense tha t
rules can be reconstructed and then asserted directly without much trouble. However, asserting
something like

f i b (0 , 1) .

which is assembled by the string " f i b " and " (0 , 1) " , is interpreted by Prolog as

"fib(O, 1) ".

i.e. quoted predicate, which changes completely the semantics. Wri t ing rules to a file and then
consulting it is the easiest method to get around this problem.

5. S u m m a r y

We have described one of the successful techniques to integrate a logic based deduction sys-
tem with a relational database system. This integration approach may not be as efficient as a
t ightly integrated expert database system which utilizes more sophisticated integri ty constraints
and has full information about the database s tate at any given time. However, our prototype
was easy to implement (took about three weeks) and may be useful for existing database systems
where it is expensive to change the code of the DBMS. Its main advantages are

(1) The user can write the whole application in Prolog and use information already
stored in an INGRES database without knowing the INGRES system.

(2) The schema of the database is loaded by the system automatical ly.

S I G M O D R E C O R D , Vol. 17, No. 2, J u n e 1988 87

(3) Both rules and data are stored in the database. Rules used in a query but not
defined in Prolog, will be retrieved from the database automatically.

We are currently working on extending the system to support more general queries. At
present the system handles disjunction and recursion but very inefficiently. It handles disjunc-
tion by converting the DBCL query into disjunctive normal form and then generating a query for
each of the conjunctions. Since it does not consider the interaction among these disjunctions, it
is not very efficient. We are investigating ways to introduce the ideas of [SELL86] in our current
prototype. For a recursive query the system will generate a sequence of non-recursive queries to
be processed one-at-a-time from INGRES. We are also working on the idea of recognizing
recursive queries and sending them to INGRES to be processed by an EQUEL program that will
process a recursive query using iteration. Currently the whole system has around 230 clauses.

.

[CERI86]

[CHAN86]

[DOWNS0]

[FLOY62]

[GALL84]

[HAYES7]

[JARK84]

[JARK86]

[KERSS6a]

[KERS86b]

[ROSES0]

[scio86]

[SELL86]

[STER86]

R e f e r e n c e s

Ceri, S., Gottlob, G. and Wiederhold, G., "Interfacing Relational Databases and
Prolog Efficiently", in [KERS86b].

Chang, C.L. and Walker, A., "PROSQL: A Prolog Interface with SQL/DS", in
[KERSS6a].

Downey,P.J., Sethi, R., and Tarjan, R.E., " Variations on the Common Subezpres-
sion problem", Journal of the ACM (27) 4, 1980.

Floyd, R.W., Algorithm 97: Shortest Path, Communications of the ACM (5) 6, June
1962.

Gallaire, H., Minker, J. and Nicolas, J.M., "Logic and Databases: A Deductive
Approach", ACM Computing Surveys, (16) 2, June 1984.

Hayes-Roth, F., Invited Talk, IEEE Compcon, San Francisco, CA, February 1987.

Jarke, M., Clifford, J. and Vassiliou, Y., "An Optimizing Prolog Front-End to a
Relational Query System", Proceedings of the 1984 ACM-SIGMOD Conference,
Boston, MA, June 1984.

Jarke, M., "External Query Simplification: A Graph Theoretic Approach and its
Implementation in Prolog", in [KERS86a].

Kerschberg, L., Expert Database Systems, Proceedings From the First International
Workshop, Benjamin/Cummings, Inc., Menlo Park, CA, 1986.

Kerschberg, L., Editor, Proceedings of the First International Conference on Expert
Database Systems, Charleston, SC, April 1986.

Rosenkrantz, D.J. and Hunt, M.B., "Processing Conjunctive Predicates and
Queries", Proceedings of the 6th VLDB Conference, Montreal, 1980.

Sciore, E. and Warren, D.S., " Towards an Integrated Database-Prolog System, in
[KERS86a].

Sellis, T., "Global Query Optimization", Proceedings of the 1986 ACM-SIGMOD
Conference, Washington, DC, May 1986.

Sterling, L. and Shapiro, E., The Art of Prolog, M.I.T Press, 1986.

88 SIGMOD RECORD, Vol. 17, No. 2, June 1988

